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2) Both A and A, are singular (there are only zeros in the 1 th row or I th column), 
but Al formed from A, by striking out the 1 th row and I th column is nonsingular. 

3) All three matrices A, A, and A, are singular. 
In Case (1) we place zeros in the ii th row and kth column of the matrix A’ , and the 

remaining elements are those of AZ-r. In Case (2) the elements of the k th and 1 th rows 
and columns of the matrix A’ are set equal to zero and in the remaining place we put 

Al-‘. Finally, in Case (3) A’ G 9. 
It is easy to see now that if the matrix I? (4.1) is positive definite, then all the state- 

ments proved above for diagonal matrices A and B remain valid, since the quadratic 
forms yij(‘)uiuj entering into the relations (2.3) and (3.11) are also positive definite in 

the present case. 
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The possibility of application of Neumann’s procedure to the investigation of shells with 

holes is examined. 
The transfer of Neumann’s method to shells is connected with two difficulties. First of 

all, the application of Kirchhoff’s stresses does not reduce the problem directly to well- 
studied integral equations. Therefore, in this paper initially the investigation is related 
to the principal vector and moment. The latter circumstance, however, leads to singular 
integral equations which also have fixed singularities. However, the specific form of the 
resulting equations allows the establishment of Fredholm’s alternative for these equations 
within the required limits. After the proof of Fredholm’s alternative the convergence of 

Neumann’s method is proven. The results of Fredholm present the possibility to establish 
convergence of Kirchhoff’s stresses for sufficiently smooth contours of holes and load. 

We shall examine shells with holes for which Neumann’s method can be realized on 
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electronic digital computers. It is shown that in the general case of loading this class 
of shells must have holes with a diameter of the order of d - 4.5 (RP)l/a. This condition 
is compared with the known criterion of Lur’e [l], which was obtained for a cylindrical 

shell with a small circular hole. 

Let the surface of the shell be bounded by the contour S, and let it have n stress-free 

holes with contours Si and internal domains Di. The inside of the shell is designated by 

&I . The domain contained within So is called D. The domain which represents the 

union of all domains Di is called /I,. 
The displacement vector of the shell w, in addition to satisfying the equations of equi- 

librium in D,, and conditions of attachment on S, (which are not written out), must satisfy 
on Si four relationships of the form F = 0. M=O (1) 

Condition (1) is represented in the following form : 

F+ - F- = _ F-, M+_M-= _ M- (2) 

Here F is the principal vector, and-V is the moment which acts on the internal con- 

tours of the holes [2] (p. 113). Conditions (1) guarantee the uniqueness of the problem 
which is being examined. The signs plus and minus indicate limiting values of quantities 
from inside and outside of contours A’;, respectively. 

Let us introduce Green’s tensor of the solid shell c (2, JJ) and solve problem (2) by the 
following method : 4 

u0 = 
ca 

’ G (2, Y) f (Y) dy,dyz, . 7 u, = 2 \ Gi (2, s) T- 
&D 

. 
t (n-1) (4 ds 

i=lS1 

w=uo+u1+. . . fun+. . * (3) 

Here f (x) is the surface loading, and Si is the contour which is the union of all Si. 
Green’s vectors G, (t, y) on the contour have the following components: 

~1 = Ott (c (I, Y)), G, = 8, (G (2, Y)), G, = -qt (G (2, Y)), G, = 0, (G (2, Y)) 

The quantities mft, .stf, El,, 0, are the deformations p] connected with the contour S1. 
Here to obtain Gi (r, y) , mtt, qf, Bt and 0, are fulfilled three times on each column 

C (.L., Y) as a vector. In addition to this the following notation is introduced into (3) 

T1 = F,, T, = F,, T, = F,, T, = M 

The following equation is applicable : 
F=[Qda 

c 
%I 

(4) 

Here su is some fixed point for each contour Si.. 
From the determination of Green’s tensor it follows [3] that if f (2) E H (0, A, ii) and 

X1 E Xlg (B, A), then the solution according to method (3). if it converges, satisfies all 

necessary conditions for a shell with holes. 
Here we accept results of Guenter [3]: vector f (z) belongs to class H (n, A, I) if 

for each two points z, x0, the distance between which is r (r, zO), any of its components 

fi (x) has finite derivatives of the order n, which satisfy Hoelder’s condition with con- 
stants A and h 3”fi 

fin = azlpax~:zp 9 P+Q=n, 1ff,(4l<~ 

1 fin (~1 - fin (~0) I < Ar” bvo) 

The contour S belongs to the class JTTn (B, h), if the function which represents the 
equation of the contour in natural coordinates belongs to the class H (n, B, a). In these 
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definitions the values A, B, h do not depend on points z and x0. We shall prove the 
convergence of (3) in Hoelder’s norm. First of all let us agree to examine only that 

variant of the theory of shells in which the bending deformations are considered to be 
independent of the curvature [4] (p. 95). This condition allows the assumption that the 

principal part of Green’s tensor has the same’singularity as for plates 

(k, I = 1,2,3) (5) 

g13 = g,, = g31 = g,, = 0, g33 = l/d r2 lnr 

Here h and ~1 are Lame constants. Further, from equations (3) and (4) it follows that 

for any n : F, (4 = 0 (‘2 

We take into account that the principal singularities Ti are produced only by the higher 
derivatives of’w, having the following form [S, 63 

5 

s 

Ts= C( aAws &l’g 

I 
an+(f-a)w ds, T4==%+(*---b)a,z 

! 

SW3 

(7) 
8, 

Here vectors T’ (w) and wOare introduced which have two components each, 7’1 and 

T, in w1 and w2, respectively. Now, on the basis of Eq. (3) and Eqs. (7), let us compute 
the vector T-We. 

These calculations which are common in potential theory (for example [S]. p. 26 8) 

lead to equations of the form 
T-w, = ‘/z T-w,,+ - 

c 
TG (5, s) T-w,_1 (s) ds (8) 

* 
S3 

The integral must be understood in the sense of a principal value of Cauchy. A pecu- 
liarity of Eqs. (8) will be that as a result of integration over the open contour from so to 

s in (7) the singularity of the kernel TG (s, sl) has the form 

K (s, sr) = Kr (s, sr) - A-1 (s, SO) 

Here K1 (s, ~1) represents a singular kernel of Cauchy, while KI (s, ~0) is a singular 
kernel of Cauchy with a fixed singularity so. From Eq, (8) we see that the applicability 

of method (3) is equivalent to the proof that Fredholm’s theory is applicable to equation 

ip (.q) = x (l/z rp (s) - s TG (3, al) cp (~1) dslj (9) 

S! 
and that its characteristic values are greater than unity. We rewrite system (9) in the 

form 
Cp (s) 4 q , TG (s, $1) Q, (~1) dsl = 0, c 

2x q = 2 _ II 

Sl 

(10) 

From Eqs. (7) we construct a symbolic matrix of system (10) 

f* = /I p&t I/ (k, l= 1, 2, 354) 
p31= Al z!z *32 = p*‘J = 0 

(IIf 
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Pl1=PzZ=P33=P4rl=1, p13=p14=p23=p34=o 

PI2 = -P21 = 'lrrli (1 - (T), - p34 = p43 = 'i4 Tli (1 + 0) 

Here (5 is Poisson’s ratio. 

(cont.) 

In the construction of the symbolic matrix the fixed singularity was not taken into 

consideration. The values of X corresponding to det I,, = 0 for all physically conceiva- 
ble values of o do not fall into the interval - 1 < X < 1. Furthermore, the operator 

R+(t)-qK[S q&&s y&-j 
St S1 

in which I is a unit matrix, K is a constant matrix which is related to 1, in a known 
manner, regularizes (10) for values of X when det I, # 0, i.e. it reduces (10) to Fred- 

holm’s equation. 
Now we prove that equation R = 0 has only trivial zeros for values of X, which satis- 

fy the condition of regularization. Direct substitution shows that the constant vector 

cannot be a zero of the equation R = 0 and that all zeros of the equation 

R,=Zcp(t)-qK - 
c 

cp (2) dz 

8, 
t-z (12) 

differ by a constant vector from zeros of the equation R = 0 and vice versa. However, 

Eq. (12) for X which satisfy the condition of regularization has only trivial zeros ( [7], 

Sect. 63). This means that the same can be said about zeros of the equation R = 0. 

Thus, for Eq. (9) Fredholm’s theory holds. The proof that the characteristic values are 
real and not confined to the interval -i < X < 1 proceeds in the classical manner [8]. 

For this purpose we note that having constructed the potential 

V = VI + ii’2 = i \ Gi (z, s) qpi (s) ds, q = q1f.iqz 

i=lk, 

from Eq. (10) we obtain cp (s,,) = 0 and according to equations of jumps 

cp (s) = T+V - T-V 

ii 
i=l B, 

TGi (s, ~1) ~pi (~1) dsl = T+V t T-V (13) 

Substituting this into (10). separating the real and imaginary parts, multiplying the 
scalar real part by the vector (att,- F~;, 0,, 6,) VI, and the imaginary part by the vec- 
tor (wit,-+,,, 8,, O,)V,, and subtracting one from the other we obtain after integration 
over S, with consideration of conditions on S, the following expression: 

(2 - 91) W!l -I- W,) + (2 + rl1) (W’, + W,‘) = 0 (14) 
Multiplying the real part of (10) by (mtt,-- Q, et, 6,) V2 and the imaginary part by 

(%l,--ettr et. 6,) VI, after addition we integrate the obtained sum over S, , taking into 

account conditions on SU. As a result we find 

92 (W, + W,) - 7l2 (W, + Wl') = 0 (15) 

In the last two equations w, and W-, , respectively, are the potential energy of defor- 
mation corresponding to the displacement VI of solid domains 0, and D1. W,’ and W1’ 
are the potential energies of deformation of the same domains &responding to vector_VZ. 

As a result of positiveness of energy it follows from (14) and (15) that 9s = 0; lqll > 2. 
The proof khat Q = 2 will not be a characteristic value of (10) is based on the unique- 
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ness of the internal problem of Dirichlet and is carried out as in [5] (p. 345). Everything 
presented so far leads to justification of method (3) in Hoelder’s norm. After the conver- 
gence has been proven there is no necessity in (3) to compute each time the principal 

vector and moment. By virtue of uniqueness theorems we can compute the usual Kirch- 
hoff conditions on the contour Q (w) and the moment 1M. 

This is also related to the fact that in the case f E H (0, A, A)and S1 E JId (B, A) 

series (8) allow differentiation. From the representation of Fredholm’s resolvent in the 
form of a quotient of entire functions it follows that the derivatives converge under the 

same conditions as F. Therefore, instead of (8) we can compute at each stage 

Q- (w,) = l/z Q- @‘n-l ) - i 1 Q Pi’ (2, s) Qi- (w,_,)l ds 
i=l s 

(16) 

Here vectors Gi’ (.T, s) are displacements of the shell due to “unit” forces applied to 
81; the quantities Qi (i = 1,2, 3) are components of Q (w) and Q4 = M. 

It should be emphasized that method (3) represents a transfer of Neumann’s method of 
solution of a boundary value problem with given normal derivative for the Laplace equa- 
tion [9] to shells. It is also necessary to note that the numerical construction of the solu- 
tion according to method (3) at the present time is connected with considerable difficul- 
ties [lo]. 

Let us examine the conditions of application of method (3) with present computation 

techniques. The principal difficulty of computation [lo] is connected with the presence 

of terms of the form w / R in the expressions for the elongations sij , and also with the 
earlier mentioned fact that the principal part of Green’s tensor in the theory of shells is 

the same as for plates. In the implementation of method (3) therefore terms of the fol- 
lowing type appear: 

;+$S (17) 

As a consequence of the small thickness h in the general case of loading of an arbi- 
trary shell the quantity 6 must be computed with accuracy to the order of h2, which 

apparently cannot be realized with existing electronic digital computers. Therefore, we 
select a class of shells for which both terms in expression (17) are of the same order. 

From expressions (3) and (5) and equations for boundary stresses [4] we can estimate the 
norm in L, of normal stresses on the contour Si in any approximation. Then in expres- 
sion (17) we shall have instead of the first term a1 / hd”‘,and instead of the second term 
a,d’~S/2nRh3. The quantities ~11 and aZ are approximately the same, R is the minimum 
radius of curvature, and d is the characteristic diameter of the hole or the distance 
between the holes. If it is required that the last expression exceed the first (to make 
numerical computation possible) by no more than 15-20 times, an expression is obtained 
for the maximum d d z 4.5 (Rh2)1’3 (18) 

We note that condition (18) for commonly applied shells numerically almost coincides 
with the condition d2 < 4 Rh, which was obtained in [l] for a cylindrical shell. It should 
be stated that fulfilment of condition (18) guarantees the possibility of calculation for a 
shell with arbitrary holes and with arbitrary loading at the same time when the solution 

of Lur’e is applicable only to an initially moment-free cylindrical shell with one small 
circular hole. 

Further strengthening of condition (18) is connected with clarification of the form of 
the state of stress of the shell. Thus, p = 0 in cases of pure moment or moment-free 
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stressed conditions. Therefore, in spite of the fact that the method of Neumann (3) strict- 
ly mathematically always converges, its numerical application with present computation- 
al possibilities in the general case of loading is limited by condition (18). Therefore for 

fi = (lOO-1000)/z we shall have d < (20-40)/z . This class of shells presents a practical 
interest. 

The author expresses his gratitude to V. V. Novozhilov for the formulation of the prob- 

lem. 
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In recent years the attention of a large number of investigators has been drawn to the 
study of media having complex structure. The simplest of these is the Cosserat medium 
[l, 21. Mindlin’s medium with microstructure [3] is more complex. An extraordinary 
complexity is inherent in the multipolar mechanics developed by Green and Rivlin [4]. 

The essential peculiarity of all these theories is reconsideration of the concept of a 
point. If in classical continuum mechanics each point possesses only the degrees of free- 
dom of translational displacement, in the Cosserat theory the degrees of freedom of a 
rigid body are ascribed to it. In the theory of a medium with microstructure each point 
possesses the degrees of freedom of a body with homogeneous strain, i. e. twelve degrees 
of freedom. In multipolar mechanics the mechanical state of each point is defined by 
n kinematical parameters, where n must be finite but may be as large as desired. A new 

model of a medium of similar type will be constructed below. 
We shall postulate the presence of some load-carrying medium and shall assume that 


